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We present a sufficient condition for the presence of spontaneous magnetization for the Ising model on a
general graph, related to its long-range topology. Applying this condition we are able to prove the existence of
a phase transition at temperature T�0 on a wide class of general networks. The possibility of further exten-
sions of our results is discussed.
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I. INTRODUCTION

Since the original paper by Ising �1�, in which it was
proved that the Ising model on an infinite linear chain would
not show a phase transition, a huge amount of research has
been conducted on the subject. The first phase of this fruitful
line investigated regular systems and after the articles by
Peierls �2� and Onsager �3� it became clear that regular lat-
tices in d dimensions would magnetize when d�2.

In a second phase, a large number of fractals was inves-
tigated �4–8�, mainly via the so-called renormalization group
techniques, to discover that, although no rigorous theorem
has been proven, those �and only those� fractals which have
an infinite minimum order of ramification display spontane-
ous magnetization.

In the same years, fundamental analytical results were
obtained for disordered structures embedded in Euclidean
lattices, applying percolation theory concepts �9�.

More general graphs �10–14� have become increasingly
popular in the last twenty years: the main difference with the
previous cases is that the metric structure of the embedding
space ceases to play an essential role, as in general a graph is
a topological structure which is not necessarily embeddable
in a finite-dimensional Euclidean space. The absence of
translational invariance and scale invariance makes general
graphs very difficult to study, as ad hoc techniques must be
employed, that usually admit no straightforward generaliza-
tion.

An important result would be the identification of a
simple parameter, capable of determining whether the Ising
model on a given graph exhibits a phase transition: we
present here a theorem stating a sufficient condition for a
graph to exhibit spontaneous magnetization, which is a gen-
eralization of the classic Peierls-Griffiths theorem �2,15� for
the square lattice. While interesting works, employing the
same basic techniques as the Griffiths theorem, have been
proposed for higher-dimensional lattices, typically stemming
from the paper of Dobrushin �16,17�, such as the profound
contribution by Isakov �18� and the extensions to nonsym-
metric situations treated in Pirogov-Sinai theory �19�, or di-
rectly from the paper by Griffiths, as in Lebowitz and Mazel
�20�, nothing applying to inhomogeneous networks and arbi-

trary graphs has yet emerged, and our contribute aims essen-
tially at filling this gap.

The reason why the modulus of magnetization ��M�� is
considered is that it is indissolubly tied to the long-range
order of the graph: it is easy to prove that, when the external
field is zero, stating ��M�����0 is equivalent to the exis-
tence of a nonzero measure subset of all the correlation func-
tions such that all of its members are greater than a small
constant ���0.

In the following, we first present the concepts of open and
closed borders in a graph for later use; we then define the
ferromagnetic Ising model on a general graph and derive the
equivalence of the sum over configurations and the sum over
different borders. Next we prove a theorem stating a suffi-
cient condition for a graph to exhibit spontaneous magneti-
zation. Because of the technical nature of the theorem, we
thoroughly examine its more and less immediate conse-
quences for a wide range of different graphs. Lastly, we dis-
cuss our results and the current comprehension of the mecha-
nism of spontaneous magnetization on graphs for the Ising
model.

II. OPEN AND CLOSED BORDERS IN A GRAPH

A graph G is a pair �P ,L�, where P is a countable col-
lection of vertices and L�P�P is a set of unoriented bonds
between points. Any pair G�= �P� ,L��, such that P��P, L�
contains only links between elements of P� and L��L, is
called a subgraph and it’s denoted G��G. We will restrict
our attention to those graphs whose coordination number zi,
representing the number of bonds in L having one extremum
in i, is uniformly limited: an integer zMax�0 exists such that
zi�zMax for all i�P.

We now define a path �, between two points i and j, as a
collection of consecutive bonds of L, where consecutive
means that each pair shares a vertex with the next one:

� = ��il1�,�l1l2�, . . . ,�lD−1, j�	 .

Directly associated to the concept of path, the chemical dis-
tance between two points i and j is defined as the length of
the shortest path connecting them. The chemical distance
straightforwardly induces the so-called intrinsic metric of the
graph.

The intrinsic fractal dimension dfrac of a graph, defined as
the minimum d such that Nr, the maximum number of verti-
ces included in a Van Hove sphere �21� of radius r �i.e., the
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set of points within a chemical distance from a given point of
no more than r bonds�, satisfies Nr�rd as r→�. It differs
from the usual fractal dimension in that it refers to the topo-
logical nature of the graph �i.e., on its natural-chemical-
distance� and not on the metric structure of the space into
which the graph is embedded.

To proceed we declare what will be considered a border
from now on.

Definition. Given a connected graph G= �P ,L�, we can
define a border B as a set of bonds that separates exactly two
connected subgraphs. It means that two sets P1 ,P2�P exist
such that

�i� P1�P2=� and P1�P2=P,
�ii� any path on G from a point of P1 to a point of P2 must

contain at least one bond of B,
�iii� a path exists between any two points in Pi �i=1,2�

that doesn’t contain any bond of B.
It is noteworthy that the union of two disjoint borders is

not a border itself under this definition, as it divides the
graph into three subgraphs. This is a feature we’ll later need
to avoid overcounting different configurations.

The intuitive idea of open and closed border is actually an
artifact created by our visualizing regular lattices as im-
mersed in a finite dimensional real space: the seeming adja-
cency of the vertices creates a contour of the graph, which
we use to define closed and open borders. The fact is that this
contour is heavily dependent on what particular immersion
we employ and ceases to exist when we consider the graph
for itself. The border in itself has no geometry whatsoever,
since it is just a collection of links, and even the notion of
“continuous” border, without further specifications, makes
no sense from a graph-theoretic point of view: in a general
graph, a border is just a collection of links that splits it into
two parts. We now define open and closed borders with re-
spect to an external set of points, as it will be useful later.

Definition Given a border B and a set of points E�P, we
say that B is closed with respect to the external points set E
if either P1�E=� or P2�E=�, otherwise B is open.

For any finite subgraph GN of a given graph G, we choose
the natural set of external points E:

E 
 �i � GN:�i, j� � L for some j � G \ GN	 .

Now, given a border Bi that divides GN into two subgraphs Ai
and Ci, we define Ai as

�i� internal if
�1� Bi is closed and Ai�E=�, or
�2� Bi is open and Ai contains fewer elements than Ci, or
�3� Bi is open, Ai has the same size as Ci and the points in

Ai linked to Bi have negative spin;
�ii� external if
�1� Bi is closed and Ai�E��, or
�2� Bi is open and Ai has more elements than Ci, or
�3� Bi is open, Ai has the same size as Ci and the points in

Ai linked to Bi have positive spin.
The reason why we had to select a finite subgraph GN is

that we need to be able to count the number of spins in the
graph for the previous definitions to make sense.

III. FERROMAGNETIC ISING MODEL ON A GRAPH

Let now 	i= 
1 be a spin variable for each vertex i�P.
We define the Ising Hamiltonian on a graph as

H = − �
�i,j��P�P

Jij	i	 j − �
i�P

	ihi, �1�

where the couplings Jij =Jji must satisfy 0�Jij �JMax��
for some JMax and Jij �0 if and only if �i , j��L. In the
following, we will set the external field to zero everywhere
�hi
0�.

Now that we have presented the terminology we’ll be
using, we are going to study the equilibrium statistical me-
chanics of the Ising model at inverse temperature � and in
particular the modulus of the magnetization

��M�� = Z−1�
�	i	

�� j�P	 j�
�P�

e−�H��	i	�, �2�

where Z=��	i	
e−�H��	i	� is the partition function and �P� is

the cardinality of P.
Since �M�= ��M�2�− ��M����M��; is a variance,

�M2� � ���M���2,

so stating ��M��=��0 implies �M2���2�0. On the other
hand, since M2� �M�, the converse is true, so �M2��0 and
��M���0 are equivalent.

As we have now defined the main quantities we’ll be
studying, our next step is to prove that we can substitute the
sum over configurations of the graph with a sum over pos-
sible border classes that we now define.

IV. EQUIVALENCE BETWEEN SETS OF BORDERS AND
SPIN CONFIGURATIONS

Definition. A border class is a class C= �Ci	 of border
sets Ci= �B1

i ,B2
i , . . . ,BNi

i 	, where i=1, . . . ,NC such that
�i� Bu

i �Bv
i =� for all i=1, . . . ,NC and u ,v=1, . . . ,Ni,

�ii� �l=1,. . .,NiBl
i=�m=1,. . .,NjBm

j for all i , j=1, . . . ,NC.
Theorem. To any given border class corresponds one and

only one configuration of spins on P, once we set the value
of a single spin.

Proof. To prove that, for any border class and a given spin
p�P, we can construct a single spin configuration, we first
choose an arbitrary representative Ci= �B1

i , . . . ,BN
i 	 of C and

set all the spins to the value of p, then for each Bk
i �Ci we

flip all the spins of the subgraph which doesn’t contain p.
The result is independent of the order in which we choose
the Bk

i , since each spins changes sign once for every border
that separates it from the fixed spin p and is independent of
the specific i.

To prove that for any given spin configuration we can
create a single border class, we proceed as follows: let R
 be
the sets of all plus �minus� spins,

R
 
 �i � G:	i = 
 1	 .

We now choose the subsets Ri

 of R
, so that each Ri


 is
connected, while for all i� j Ri


 and Rj

 are disconnected;

moreover we require that
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R
 
 R1

 � R2


 � . . . � RS

,

Ri

 � Rj


 = � ∀i�j .

We are selecting individual clusters of homogeneous spins,
so satisfying the above requisites is always possible. Setting
now

�Ri

 
 ��a,b� � L:a � Ri


,b � Ri

	 ,

the sets B

�R1

� . . . ��RS


 are a collection of links each
defined unambiguously and furthermore B+
B−. It may hap-
pen that for some i the subgraph G \Ri


 is made of two dis-
connected subgraphs �e.g., when a ring of plus spins is sur-
rounded by minus spins�; as a consequence �Ri


 is not a
border according to our definition. In that case it is possible
to split �Ri


 into subsets, so that each of them divides G into
two connected subgraphs. After dealing in this way with all
the Ri


, we are left with a collection of well-defined borders
�Tj

+, with j=1, . . . ,U+, and �Tk
−, with k=1, . . . ,U− where

U+ ,U−�S. It is still possible that some of the borders Ti
+,

while defining exactly the same zones, have no correspond-
ing border in Ti

− but, since they nevertheless verify B+
B−,
they belong to the same border class, completing the proof.

The main consequence of this result is that we can sub-
stitute a sum over border classes for a sum over configura-
tions whenever needed and we can infer from the structure of
the borders some limiting properties for the spins distribu-
tions, as we’ll see soon. It is worthwhile to explicitly notice
that, when we pass from a sum over configurations to one
over borders, and not border classes, we overcount some
borders, as there are more than one representative of each
border class: this is not going to be a problem in the use
we’ll make of this result.

V. GENERALIZED PEIERLS-GRIFFITHS’ THEOREM

We can divide the set of all configurations on GN into two
classes:

�i� all the negative spins are internal to some border �class
N�,

�ii� at least a negative spin exists that is external to all
borders �class P�.

The second case implies that every positive spin lies in-
side some border, since it must lie on the opposite side of the
negative spin which is always external.

We now restrict our attention to the configurations be-
longing to the first class, denoting by a subscript N the quan-
tities that pertain to it; we can obtain a good estimate of the
number of negative spins, �N−�N, as follows: the sign of a
spin p is negative if it is contained inside an odd number of
borders, positive otherwise; we obtain a very naive, yet ef-
fective, approximation if we consider any spin contained in-
side at least one border as negative: letting Ip be 1 if p is
inside at least a border, 0 otherwise, we can write

�N−�N � �
p�G

�Ip� .

We are now to give a reasonable estimate of �Ip�: take all the
configurations C with at least one border containing p, call

bmin the length of the shortest border in C containing p and
let k be the number of borders containing p, so as to write

�Ip� = Z−1 �
C�p inside

e−�H = Z−1 �
bmin�1

�
k�1

�
C�k borders

bmin

e−�H.

Now fix bmin and consider the configurations containing k
borders: if we remove the shortest border from such a con-
figuration C, we obtain a configuration C� with �k−1� borders
containing p, each of them at least bmin long. C� will be
present in the partition function Z, but different configura-
tions with k borders C may give the same C�; defining now
�p�b� as the number of possible borders of b links containing
p, the degeneration induced by removing the shortest border
is not greater than �p�bmin�. The energy of a configuration C
and the corresponding Boltzmann factor obey

EC � EC� + 2�Jminbmin,

e−�HC � e−HC�e−2�Jminbmin;

if we now limit the sum in the partition functions to those
configurations obtained by removing a border from the nu-
merator, we can write

Z−1�
k�1

�
C�k borders

e−�H � �p�bmin�e−2�Jminbmin.

In this way the average number of minus spins is bounded by
a function depending only on the number of borders encir-
cling a given spin:

�N−�N � �
p�G

�
bmin

�p�bmin�e−2�Jminbmin;

this result states that, no matter what the maximum number
of spins you can isolate inside a border is, as long as �p�b�
grows at most exponentially the value of �N−�N can be lim-
ited at low enough temperatures. An analogous result holds
for configurations of class P when exchanging the roles of
positive and negative spins:

�N+�P � �
p�G

�
bmin

�p�bmin�e−2�Jminbmin.

Let now ��b�=supp �p�b�. We can now prove the follow-
ing theorem.

Theorem. If on an infinite graph ��b��Ab, definitely for

b� b̄ and for some for some A�0, then the graph exhibits
spontaneous magnetization at large enough � �low enough
temperatures�.

Proof. The average modulus of magnetization is �M�
=N−1�N+−N−�; writing the Boltzmann factor for a configu-
ration C as PC=Z−1e−�H�C�, we can write the following:

��M�� = �
C�P�N

�MC�PC

= �
C��P � N�+

MCPC − �
C��P � N�−

MCPC

= � �
C�N+

MCPC − �
C�N−

MCPC� + � �
C�P+

MCPC
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− �
C�P−

MCPC�

= � �
C�N

MCPC − �
C�P

MCPC�

+ 2� �
C�P+

MCPC − �
C�N−

MCPC�

� � �
C�N

MCPC − �
C�P

MCPC�

= 1 −
2

N
� �
C�N

�N−�CPC + �
C�P

�N+�CPC�

� 1 −
4

N
�
p�V

�
bmin

�p�bmin�e−2�Jminbmin

� 1 – 4e−2�Jmin �
b�1

��bmin�e−2��b−1�Jmin,

When the sum on the last line converges, the equation tells
us that, for large enough � �low temperatures�, ��M�� is
greater than a positive constant, so that spontaneous magne-
tization on an infinite graph is achieved, while in general
��M�� is finite for every N, but can tend to zero as N→�.

The main problem in employing the previous theorem is
determining bounds on ��b�. The simplest case in which the
hypothesis does not hold is a situation in which for some
finite b the number of borders surrounding a given point is
infinite. As a sound check of the validity of the theorem, all
the weakly separable �22� graphs, which do not magnetize,
belong to this category.

To further our understanding of the result, we need to
present a parameter. Given a subgraph A�G, we define its
external boundary �A as the set of points in G \A that have a
bond to a point in A; denoting the number of vertices in A as
�A� we now present the isoperimetric dimension diso as the
minimum d such that �A�C · �A�d−1/d. The largest set of
points which can be encompassed with b links is thus smaller
than bdiso/diso−1; since these points are connected, bdiso/diso−1 is
also the maximum radius of a set including i with a border b,
so the set of reachable points, V�b��P, has a cardinality
�V�b���bdisodfrac/diso−1.

Given a point p and for each border B, consider B, the
collection of vertices contributing to B which are on the
inside of B with respect to p. As the two are in biunivocal
relation once p is chosen, counting the borders is the same as
counting the vertex borders.

As a consequence of the previous paragraphs, the follow-
ing holds:

Proposition. In a graph with isoperimetric dimension
diso�1, the number of possible borders surrounding p is
bounded by

�p�b� � �
q

�V�b��

Nq�b� � bdisodfrac/diso−1 · NSup�b� ,

where the sum is over the points q which can be enclosed in
a border of size b, Nq�b� is the maximum number of vertex
borders of length b, containing p, which can be created start-

ing from the point q, and NSup�b�=supq�V�b� Np�b�.
A border is connected if the corresponding vertex border

is a connected set. We will need the following proposition
regarding Np�b� to obtain a general result.

Proposition. The number of connected vertex borders
starting from a given point p grows at most exponentially
with b :Np�b��const·Cb.

Proof. A tree is a graph that has no loops. From each
connected subgraph A we can draw a number of different
spanning trees, i.e., trees having the same set of points P as
the original A. For any spanning tree we can construct a path
visiting all its vertices in no less than b−1 steps and in no
more than 2zMaxb steps. While the former statement is obvi-
ous, we now prove the latter using the following algorithm:
starting from i, choose link and cross it; at each vertex on the
path, choose a link not yet crossed; if there is no free link,
step back through the link from which the path first arrived at
the vertex. With this algorithm, each link is crossed no more
than twice, so the path is of no more than 2zMaxb; further-
more, all the links are crossed, so, since the boundary is
connected, all the points are visited. As a consequence, all
the spanning trees of b points starting from a vertex i can be
constructed as paths of b−1,b , . . . ,2zMaxb steps. Since each
step can be chosen among at most zMax links, the total num-
ber of possible spanning trees, starting from i and made of b
vertices, is less than

zMax
b−1 + zMax

b + . . . + zMax
2zMaxb =

zMax
2zMaxb+1 − zMax

b−1

zMax − 1
,

and the thesis follows:

Np�b� � const · Cb.

When a vertex border is made of more disconnected parts,
��b� grows exponentially if, for all borders, it’s possible to
connect all the parts using no more than l ·b vertices, where
l is a constant of the graph: in fact in this case to each border
of length b corresponds one connected vertex border of
length between b and b · l, so that

N�b� � Cb + Cb+1 + . . . + Cl·b =
Cl·b+1 − Cb

C − 1
.

Noting that diso�1 implies that there is no border length b
for which �p�b� is infinite, the previous results can be com-
bined to form the following theorem.

Theorem. For all graphs with isoperimetric dimension
diso�1 and vertex borders which are connectable with no
more than l ·b vertices, a finite critical �c�� exists such that
for all ���c spontaneous magnetization is achieved.

To the latter category belong the regular lattices in d�2
dimensions and crystals with any kind of elementary cells;
we explicitly note that for an Euclidean lattice in d=2 di-
mensions we recover the result by Griffiths �15�. In addition,
each vertex border can be connected with no more than l ·b
vertices in the Sierpinski carpet too, which therefore magne-
tizes, in accord with the existing literature �23� �see Fig. 1�.

Consider now the ladders of infinitely growing height �see
Fig. 2�: they are structures described, at any offset n on the
semi-infinite base line, by a nondecreasing integer function
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h�n�; as long as the isoperimetric dimension of the ladder is
strictly greater than one �h�n��A0n�+B0, for ��0, A0�0,
and B0�0� the previous arguments apply, so the ladder mag-
netizes; on the other hand, when diso=1 a little more work is
required: the total number V�b� of vertices which can be
included in at least one border of length b cannot grow faster
than the number of points on the left of the rightmost border
of length b; the latter is at offset n�b�=max�n� �b=h−1�n��	,
so that V�b� satisfies V�b���i=1

n�b�h�i� for large b; when

B0 + A0 log i � h�i� � B1 + A1i�,

for some A0 ,A1�0, B0 ,B1�0, and ��1, the volume satis-
fies

V�b� � 
1

eb/A0

di�B1 + A1i�� �
b

A0

A1

2�� + 1�
e2��+1�b/A0,

and since the borders are all connected ��b� is exponential
and the graph magnetizes. When instead limn→�

h�n�
log n =0, for

all ��0 and n large enough h�n��� log n holds; as a con-
sequence,

V�b� � 
0

b/�

dih�i� � 
0

b/�

di = eb/�,

holds for all ��0; in this case the sum �b��b�e−2��b−1�Jmin

diverges for all temperatures, so the hypotheses of our theo-
rem are not fulfilled. These results are in agreement with a
result by Chayes and Chayes �24� about more general struc-
tures called d wedges, where it is proved that h�n�� log n is
both a sufficient and a necessary condition for spontaneous
magnetization.

VI. DISCUSSION

To give a more intuitive interpretation of the theorem we
proved, we can proceed as follows: if the number of borders
grows less than exponentially, we can argue that all of these
borders will contain a number of spins increasing slowly
with the length of the border; as a consequence, the forma-
tion of large clusters of spins in a magnetized graph will be
energetically unfavored, so that the latter will result a stable
state. On the other hand, if �i�b� grows very fast with b, we
expect that some of the borders will be far from the vertex i,
so that more and more vertices will be enclosed in short �low
b� borders; this in turn means that large clusters of spins can
be flipped spending a small amount of energy, so that a mag-
netized graph may be unstable with regard to thermal fluc-
tuations.

The condition of our theorem is a strong one, in that it
investigates a global property of the graph. For this reason it
cannot be a necessary condition for achieving spontaneous
magnetization: if a graph has a part, which has zero measure
in the thermodynamic limit, for which the number of bound-
aries �p�b� is greater than any exponential �e.g., a semi-
infinite line connected to a point on a plane�, the hypothesis
of the theorem is false but the graph as a whole can still
magnetize.

An important, yet straightforward, observation is that
whenever a subgraph of nonzero measure exists that is mag-
netizable, all the graph is magnetizable: in fact all the corre-
lation functions, as computed on the subgraph, are smaller
than or equal to the corresponding ones in the complete
graph; when, on the other hand, the graph is formed by a
collection of zero measure, weakly connected, magnetizable
subgraphs �e.g., an infinite collection of parallel planes, each
connected via a single link to the next one�, there is no guar-
antee that ��M���0.

Our result about the Ising model on graphs is a further
step toward a full comprehension of the mechanism of phase
transitions on general networks: together with a sufficient
condition for the lack of spontaneous magnetization �22�, it
allows to ascertain the magnetizability of a large number of
structures with a minimal amount of computation.

Further steps extending this work should aim at closing
the gap between magnetizable and nonmagnetizable graphs
under the ��M�� definition, in order to identify a condition
both necessary and sufficient for spontaneous magnetization;
another direction of development could be to treat non sym-
metric situations, as in Pirogov-Sinai theory.

FIG. 1. The Sierpinski carpet allows for disconnected borders,
but they can be connected with no more with l ·b links, so the
number of possible borders grows no faster than an exponential
with b and the graph magnetizes.

FIG. 2. Two examples of growing ladder graphs: in �a� all the
borders are connected �remember that following the definition we
use here, a border divides a graph into exactly two subgraphs, each
connected� and as a consequence the graph will magnetize. In �b�
too the borders are connected and even if the growth in width of the
ladder is very slow �logarithmic� the same result holds.
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